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The classical problem of steady ship waves which are induced in a deep liquid by a domain of surface pressures that is moving 
uniformly and rectilineafly is investigated. Exact expressions are known (in the linear formulation) for the characteristics Of the 
induced waves in the forna of double integrals and single integrals with a special function, the integral exponent. Using the analytic 
properties of the solution, a simpler expression is obtained for the elevation of the surface of the liquid in the form of single 
integrals of standard fun,ztions, which enables one to simplify considerably the numerical analysis of the neighbouring wave field 
domain. © 2000 Elsevier Science Ltd. All rights reserved. 

The well-known solution of the linear problem of surface ship waves [1, 2] represents the elevation of 
the surface of the liquid as a sum of two terms. One of these (in the form of a double integral) describes 
the local perturbations in the neighbourhood of the generator while the other (in the form of a single 
integral) describes the system of ship waves behind the generator. A double integral which has an 
unbounded domain of integration and an oscillating integrand is the most difficult for calculations, 
and, on account of this, it is of interest in to transform this term into a form which is more convenient 
for calculations. A significant advance in this direction has been its transformation into a single integral 
with a special function, the integral exponent [3]. Such a technique has turned out to be extremely 
constructive: its use has enabled an analogous solution to be obtained in problems on surface waves in 
a liquid of finite depth [4] and internal waves in a stratified liquid [5]. However, calculation of the local 
term takes up about 90% of the time required for the calculations [3], which is due to the accompanying 
calculations of the integral exponent with a complex argument. Subsequent investigations of the problem 
of internal ship waves [6] have shown that the use of the analytic properties of the solution enables one 
to transform the double integral into a single integral of standard functions and thereby substantially 
reduce the time required to calculate the local term of the perturbation field. This result, obtained for 
internal ship waves, cannot be immediately transferred to the surface wave model since there are 
differences in the dispersion relations of the internal and surface waves associated with the different 
boundary conditions on the surface of the liquid used in these models. However, in the case of surface 
waves, local perturbations as well as wave perturbations can be represented in the form of single integrals 
with a simple integrand, and a form of representation of the solution is thereby obtained which is economic 
for calculations. 

1. Suppose that pressures of the form move over the surface z = 0 of a deep liquid, occupying a domain 
--,0 < x l ,  y < +'~, --~ < z < 0, at a constant velocity c in the negative direction of thex axis. 

Pa = Pof(Xn + c t ,  y) (1.1) 

In the linear formulation, the perturbations of the liquid, which are created by pressures (1.1), are 
described by a Laplace equation in the potential of the perturbed velocities 

Ate=0 (--.o<x, y<+**,-**<z<0) (1.2) 

with the boundary conditions 

~,~ + ~ x  + P~  = -(Pc) -t P.,x (z = 0) 

~ 0  (Ixl, lyl~**,  z--->--**) 
(1.3) 
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Here, x = x 1 -[- ct, f5 = gc -2, g is the acceleration due to gravity and P is the liquid density. The equation 
of the surface of the liquid is specified by the formula 

= _(pg)-I p,, _ cg-l (¢x + e¢) (z = 0) (1.4) 

where E is the Rayleigh parameter (E --* +0). 
Equations (1.2) - (1.4) are written in the system of coordinates associated with pressures (1.1). 

2. By carrying out a Fourier integral transformation with respect to the horizontal coordinatesx and 
y on (1.2) - (1.4), we obtain an expression for the elevation of the surface of the liquid 

;(x, " -  P0_..._._~ T T exp[i(mx +ny)] F(m, n)dmdn (2.1) 
) ~ -  4n2pg ~ ._~ m z - i m e - ~ l k  

Here, k = ~ m  2 + n2; F(m, n) is the Fourier transform of the function f(x, y). 
We now consider a model distribution of the pressures of the form 

f (x ,  y)=(R21a2 +l) -a/2, E(m, n)=2rta2e -ak, R2= x2 + y 2 (2.2) 

When the parameter a tends to zero and the productp0 a2 tends to (2n)-1, this distribution degenerates 
into a ~-function which enables one to obtain an expression for Green's function of the problem in 
question. From this point of view, the introduction of function (2.2) can be considered as a regularization 
of (2.1). A pressure which is constant and equal top0 within a circle of radius a and equal to zero outside 
this circle has previously been used [1, 2] with the same purpose. The Fourier transform of this 
distribution is expressed in terms of a Bessel function which is less convenient than (2.2). 

We now substitute expression (2.2) into (2.1) and, changing to polar coordinates 

(m, n) = k(cos 0, sin 0), (x, y) = R(cos y, sin 7) 

we thus obtain 

p 2n 
~(x, Y)=2"~X ! - - - - - ~  kexp[k(-a+iB)] dkd0= 

cos u 0 k - (~+iecosO)  cos-20 

n~2 j r (0  ' R, a2~, 
P ~ Re 7)dO, P = P o - -  IX=Rcos (e -7 )  

~a -g/2 cos 2 0  pg 

(2.3) 

exp[k(-a +/IX)] 2 dk (2.4) 
Jr(0, R, T)= i k- ( [3+iEcos0)cos-  0 

3. When e > 0, the inner integral (2.4) has a pole in the upper complex half-plane of the variable 
k. As was done previously [3], using the methods of contour integration and the change of variable 

k[a + ijx] =x, Im ¢ = O, Re z 0 

we transform integral (2.4) to the form 

Jr (0, R, y) = 2niH(cos(O - 7)) exp(¥r ) + ~ exp(-x) dx 
0 " C + ~ r  

(3.1) 
• r = ( -a  + il.t)([$ + iecosO)cos -2 O, H(rl) = f / 1' 

rl > 0 

0, r l<0 

In the expression on the right-hand side of (3.1), it is possible to take the limit as e ~ +0, and, on 
doing this and using the definition in [7] of the integral exponent El(rl), we obtain 

p o ~ x /2  
~(x, y) = - ~- Re ~aa _~/2 W2 [2~iH(~t) + E I (~)]d0 

W, = exp(~)cos-" 0, V = ~r  Ir=o = ( -a  + il.t)~cos 20 

(3.2) 
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Formula (3.2) gives a representation for ~(x,y) in the form of a single integral with a special function 
in the integrand which, in calculations of the wave field using formula (3.2), has to be computed for 
complex values of its argument and involves a substantial volume of calculations [3]. 

4. In the case of the internal wave field, an expression similar to (3.2) has been transformed [6] into 
a formula containing single integrals of standard functions. This method cannot be directly used to 
transform relation (3.2) into a simpler formula due to differences in the dispersion relations of the surface 
and internal waves. However, integral (3.2) can be simplified considerably by making use of the analytic 
properties of the integral exponent EI(~). 

We will use the fact that El(rl) has a logarithmic singularity at zero and at infinity. The difference in 
the values of El(rl) on the sides of a cut along the real axis of the variable lq from --~ to 0 is calculated 
using the formula 

E1(-11 +i0)-EI(-B-/0) = -2hi 

The asymptotic born Of El(rl) when hi oo has the form [7] 

E,('q)= rl-' exp(-'q)(l + O(rl-t)) Oargrll< 3n I (4.1) 

The substitution x := -x: and the replacement 0 = -0' in (3.2) shows that 

,.~ x12  

~(-x, y)=~(x, y ) - 2 P I m  " S W2d0 
~a -x12 

(4.2) 

It is therefore possible in the subsequent transformations to confine the treatment to the case when 
x>~0. 

We separate from (3.2) the term containing the special function E1 

x12 

Ji = Re I '~I'2E,(¥)d0 (4,3) 
-~12 

Consider the strip I Re 0 ] ~ rU2 in the complex plane of the integration parameter 0. The poles of 
the function ~, E(0) = EI(~) and 0 = -x-n/2 are the singular points of the function ]Im 0 [ = o., and 
0 = 00 are the zeros of ~, where 00 is the solution of the equation 
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+ 
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Fig, 1. 
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a-iReos(O-7)=O: Re00 = - n / 2 + 7 ,  sh(ImOo)=-a/R (4.4) 

In order to separate out the single-valued branch of the integrand of (4.3), we construct cuts from 
00 to -n /2  as long the curve ll and from It/2 to Im 0 = +ioo along the curve/2 such that Re ~ < 0 and 
Im ¥ = 0 on these curves (Fig. 1). 

We note that the curve 11 intersects the real axis 0 at the point 0z = -~/2  + y. We denote the part of 
ll which goes from 00 to 01 by/1L and the part which goes from 01 to -n /2  by 112. In addition, we denote 
the sides of the cuts on which li], l~2 has the corresponding sign (Fig. 1) by 12. Analysis shows that, on 
moving along Im ~ from ll to 00, the imaginary part of ~ is positive to the right of the curve and, on 
moving along -~/2  from 12 to 7t/2, Im 0 = +i oo it is positive to the left of the curve. The asymptotics 
(4.1) enable one to take the limit with the closure of the contours of integration in the neighbourhoods 
of the singular points. 

By transforming the paths of  integration in (4.3) first into the upper arid then into the lower complex 
half-planes of  the variable of integration 0, we obtain 

r i.,,. } J,=Re + : R e - J + ! +  J" - f  
- 2 OI ) ~. li-2 /12 - ' ~ / 2  I~" 

/ "; ) :'<o/ s + - , s+J  
t,-,~/2 ol ) t, - ,=/2 ~/2-i- tfi 

(4.5) 

(4.6) 

It is easily verified that 

(-x12+~' 
Re/ I 

\ -~/2 
=0andRe .1" = R e  ~ =Re  

7¢12-i=) - x l 2  ~¢12 I~ 

Adding (4.5) and (4.6), we find that 

(4.7) 

Next, taking account of the difference in the values of the integral exponent on the sides of the cuts, 
we obtain from (4.7) that 

(4.8) 

Substituting expression (4.8) into (3.2), we drive an expression for ~(x, y) in the form of a sum of 
single integrals 

a ( ./.2 "~ 
- - 2 J  I I +I J+,ae ~(x,y)  = P Im  | + - 

t 81 It I It2 12 
(4.9) 

We differentiate formula (4.9) is differentiated with respect to a taking account of the fact that, in 
the second integral in (4.9), the lower limit of integration depends on a and, therefore, 

/,--± j .~do=± ~' .~do=- ~°°/~ 
Oa tu Oa oo.0dj~ c°s2 00 

- lVoV2a0 
/11 

We find from (4.4) that OOolOa = i[Rsin(00- ?)]-1. Next, on carrying out the necessary transformations 
and transforming the path of integration in the domain Re ~ ~< 0, we obtain the final expression 
for the elevation of the surface of the liquid in the form of a sum of single integrals of standard 
functions 
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~(x, y) = -PI3[sgn(x)~l (I x I, y) + 42(1 x 1, y)] (4.10) 

x12 
; l (x ,y)  = Im I V4 d0 (4.11) 

-x12 

a2x2 - y2(R2 + a2) + Im +~" W4d0 

 2(x, y) = e2 +o2(y 2 + a2)  eo 
(4.12) 

The integration path in (4.11) assess along the real axis while, in (4.12), the path must not pass through 
the points 0 = _ ~/2. 

Expression (4.12), can be modified, if partial integration is carried out. The contribution of the 
boundary point 00 i~; opposite in sign to the first term of this expression and cancels it. However, the 
integrand is complicated in this case and it is required that the integration path should not pass through 
the stationary points. 

The integral from (4.12) can be transformed to a form which is more convenient for calculations. 
We choose the path of integration in (4.12) to be parallel to the imaginary axis and, putting 0 = Or + iOi, 
we make the substitution cos o) = 1/ch 0i. As a result we obtain the formula 

Irn ~ e x p ( - v )  dO = Re ex 
a0 cos 4 0 (4.13) 

d(o)) = sin 7 + isin to cos 7, (% = -0  a r c s i n ( a / ~ a  ~ + R 2 ) 

This transformation is possible when 7 ~< % >-n /2 ,  when the rectilinear integration path does not 
pass through the siingular point 0 =-n /2 .  When - n / 2  ~< ~/ < ~0, the path of integration in (4.12) is 
constructed from a segment parallel to the real axis 0 from 00 to the imaginary axis and the interval of 
the imaginary axis from i Im 00 to ioo. The integral along the imaginary axis is transformed to a form, 
analogous to (4.13). 

If one puts a = 0 in formulae (4.11) and (4.12), and the productp0a 2 in (4.10) is replaced by (2~) -l, 
an expression is obtained for the waves formed by pressures which are concentrated at a single point 
of the surface of tilde liquid. 
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